TABLE XLVII. LINER-BORE STRESSES AND INTERFERENCES FOR A 6-INCH-BORE MULTIRING CONTAINER WITH K = 8.5, N = 5, k_1 = 2.0, k_n = 1.44, n = 2, α_r = 0.5, AND α_m = -0.5(a)

	Stresses at Bore of Liner(b)									
	Residual Stresses at RT			Prestresses at Temperature			Operating Stress at Pressure and Temperature			
	$\sigma_{\mathbf{r}}/\sigma_{1}$	$\sigma_{\theta}/\sigma_{1}$	S/o ₁	$\sigma_{\mathbf{r}}/\sigma_{\mathbf{l}}$	σθ/σ1	S/o ₁	$\sigma_{\mathbf{r}}/\sigma_{\mathbf{l}}$	σ _θ /σ ₁	s/o ₁	
RT Design	0	-1.000	-0.5000	0	-1.0000	-0.5000	-0.9727	0	0.4863	
500 F Design	0	-1.1230	-0.5615	0	-1.0000	-0.5000	-0.9727	0	0.4863	
1000 F Design	0	-1.2998	-0.6499	0	-1.0000	-0.5000	-0.9727	0	0.4863	
		Dimens	ionless Inter	ference Re	quired as Ma	anufactured(c)			

	Between Cylinders 1 and 2 for $p = 300,000 \text{ psi}^{(d)}$, $E\Delta_1/r_{1p}$	Between Outer Cylinders n and n + 1 $E\Delta_n/r_np$
RT Design	0.358	0.343
500 F Design	0.454	0.343
1000 F Design	0.533	0.343

⁽a) The k_n , K, α_r , and α_m are defined in the list of symbols. Material data are given in Table XLVI. The liner is 18% Ni steel and the outer cylinders are H-11 steel.1

⁽b) σ_r is the radial stress, σ_θ the hoop stress, S the shear stress (S = $(\sigma_\theta - \sigma_r)/2$), and σ_1 is the design strength - less than or equal to the ultimate tensile strength of the liner.

⁽c) E is the modulus of elasticity of the outer cylinders. Δ_n is interference in inches between cylinders n and n + 1. r_n is the outer radius of cylinder n.

⁽d) $E\Delta_1/r_1$ p, at elevated temperatures, depends on p. $\sigma_1 = 310,000$ psi is required, (p = 0.9727 σ_1).

TABLE XLVIII. LINER-BORE STRESSES AND INTERFERENCES FOR A 6-INCH-BORE MULTIRING CONTAINER WITH K = 8.5, N = 5, k_1 = 2.0, k_n = 1.44, n = 2, α_r = 0.5, AND α_m = -0.3(a)

The state of the s				Stresse	s at Bore of	Liner(b)			
	Residual Stresses at RT				esses at Ten		Operating Stress at Pressure and Temperature		
	σ_{r}/σ_{1}	σθ / σ1	S/o ₁	σ_r/σ_1	$\sigma_{\theta}/\sigma_{1}$	S/σ_1	$\sigma_{\mathbf{r}}/\sigma_{\mathbf{l}}$	$\sigma_{\theta}/\sigma_{1}$	s/o ₁
RT Design	0	-0.8000	-0.4000	0	-0.8000	-0.4000	-0.9727	0.2000	0.5863
500 F Design	0	-0.9054	-0.4527	0	-0.8000	-0.4000	-0.9727	0.2000	0.5863
1000 F Design	0	-1.0505	-0.5253	0	-0.8000	-0.4000	-0.9727	0.2000	0.5863

Dimensionless Interference Required as Manufactured(c)

В	etween Cylinders		Between		
1 and 2 for p = 300,000 psi(d),			Outer Cylinders n and n + 1		
	EA ₁ /r ₁ p		$E\Delta_n/r_np$		
· ·			-1: 100000 20		
	0.217		0.304		
	0.309		0.304		
	0.383		0.304		
		1 and 2 for p = 300,000 p $E\Delta_{1}/r_{1}p$ 0.217 0.309	for p = 300,000 psi(d), $E\Delta_1/r_1p$ 0.217 0.309		

⁽a) The k_n , K, α_r , and α_m are defined in the list of symbols. Material data are given in Table XLVI. The liner is 18% Ni steel and the outer cylinders are H-11 steel.

⁽b) σ_r is the radial stress, σ_θ the hoop stress, S the shear stress (S = $(\sigma_\theta - \sigma_r)/2$), and σ_1 is the design strength - less than or equal to the ultimate tensile strength of the liner.

⁽c) E is the modulus of elasticity of the outer cylinder. Δ_n is interference in inches between cylinders n and n + 1. r_n is the outer radius of cylinder n.

⁽d) $E\Delta_1/r_{1p}$, at elevated temperatures, depends on p. $\sigma_1 = 310,000$ psi is required (p = 0.9727 σ_1).