TABLE XLVII. LINER-BORE STRESSES AND INTERFERENCES FOR A 6-INCH-BORE MULTIRING CONTAINER WITH K = 8.5, N = 5, k_1 = 2.0, k_n = 1.44, n = 2, α_r = 0.5, AND α_m = -0.5(a) | | Stresses at Bore of Liner(b) | | | | | | | | | | |---------------|----------------------------------|------------------------------|------------------|---|--------------|------------------|--|--------------------------------|------------------|--| | | Residual Stresses at RT | | | Prestresses at Temperature | | | Operating Stress at Pressure and Temperature | | | | | | $\sigma_{\mathbf{r}}/\sigma_{1}$ | $\sigma_{\theta}/\sigma_{1}$ | S/o ₁ | $\sigma_{\mathbf{r}}/\sigma_{\mathbf{l}}$ | σθ/σ1 | S/o ₁ | $\sigma_{\mathbf{r}}/\sigma_{\mathbf{l}}$ | σ _θ /σ ₁ | s/o ₁ | | | RT Design | 0 | -1.000 | -0.5000 | 0 | -1.0000 | -0.5000 | -0.9727 | 0 | 0.4863 | | | 500 F Design | 0 | -1.1230 | -0.5615 | 0 | -1.0000 | -0.5000 | -0.9727 | 0 | 0.4863 | | | 1000 F Design | 0 | -1.2998 | -0.6499 | 0 | -1.0000 | -0.5000 | -0.9727 | 0 | 0.4863 | | | | | Dimens | ionless Inter | ference Re | quired as Ma | anufactured(c |) | | | | | | Between Cylinders 1 and 2 for $p = 300,000 \text{ psi}^{(d)}$, $E\Delta_1/r_{1p}$ | Between Outer Cylinders n and n + 1 $E\Delta_n/r_np$ | |---------------|--|--| | RT Design | 0.358 | 0.343 | | 500 F Design | 0.454 | 0.343 | | 1000 F Design | 0.533 | 0.343 | | | | | ⁽a) The k_n , K, α_r , and α_m are defined in the list of symbols. Material data are given in Table XLVI. The liner is 18% Ni steel and the outer cylinders are H-11 steel.1 ⁽b) σ_r is the radial stress, σ_θ the hoop stress, S the shear stress (S = $(\sigma_\theta - \sigma_r)/2$), and σ_1 is the design strength - less than or equal to the ultimate tensile strength of the liner. ⁽c) E is the modulus of elasticity of the outer cylinders. Δ_n is interference in inches between cylinders n and n + 1. r_n is the outer radius of cylinder n. ⁽d) $E\Delta_1/r_1$ p, at elevated temperatures, depends on p. $\sigma_1 = 310,000$ psi is required, (p = 0.9727 σ_1). ## TABLE XLVIII. LINER-BORE STRESSES AND INTERFERENCES FOR A 6-INCH-BORE MULTIRING CONTAINER WITH K = 8.5, N = 5, k_1 = 2.0, k_n = 1.44, n = 2, α_r = 0.5, AND α_m = -0.3(a) | The state of s | | | | Stresse | s at Bore of | Liner(b) | | | | |--|-------------------------|----------------|------------------|---------------------|------------------------------|--------------|--|------------------------------|------------------| | | Residual Stresses at RT | | | | esses at Ten | | Operating Stress at Pressure and Temperature | | | | | σ_{r}/σ_{1} | σθ / σ1 | S/o ₁ | σ_r/σ_1 | $\sigma_{\theta}/\sigma_{1}$ | S/σ_1 | $\sigma_{\mathbf{r}}/\sigma_{\mathbf{l}}$ | $\sigma_{\theta}/\sigma_{1}$ | s/o ₁ | | RT Design | 0 | -0.8000 | -0.4000 | 0 | -0.8000 | -0.4000 | -0.9727 | 0.2000 | 0.5863 | | 500 F Design | 0 | -0.9054 | -0.4527 | 0 | -0.8000 | -0.4000 | -0.9727 | 0.2000 | 0.5863 | | 1000 F Design | 0 | -1.0505 | -0.5253 | 0 | -0.8000 | -0.4000 | -0.9727 | 0.2000 | 0.5863 | ## Dimensionless Interference Required as Manufactured(c) | В | etween Cylinders | | Between | | | |--------------------------------------|-----------------------------------|--|---|--|--| | 1 and 2
for p = 300,000 psi(d), | | | Outer Cylinders
n and n + 1 | | | | | EA ₁ /r ₁ p | | $E\Delta_n/r_np$ | | | | · · | | | -1: 100000 20 | | | | | 0.217 | | 0.304 | | | | | 0.309 | | 0.304 | | | | | 0.383 | | 0.304 | | | | | | 1 and 2 for p = 300,000 p $E\Delta_{1}/r_{1}p$ 0.217 0.309 | for p = 300,000 psi(d),
$E\Delta_1/r_1p$ 0.217 0.309 | | | ⁽a) The k_n , K, α_r , and α_m are defined in the list of symbols. Material data are given in Table XLVI. The liner is 18% Ni steel and the outer cylinders are H-11 steel. ⁽b) σ_r is the radial stress, σ_θ the hoop stress, S the shear stress (S = $(\sigma_\theta - \sigma_r)/2$), and σ_1 is the design strength - less than or equal to the ultimate tensile strength of the liner. ⁽c) E is the modulus of elasticity of the outer cylinder. Δ_n is interference in inches between cylinders n and n + 1. r_n is the outer radius of cylinder n. ⁽d) $E\Delta_1/r_{1p}$, at elevated temperatures, depends on p. $\sigma_1 = 310,000$ psi is required (p = 0.9727 σ_1).